Updated: Nov 9, 2020

Abstract: Machine learning (ML) has been perceived as a promising tool for the design and discovery of novel materials for a broad range of applications. In this prospective paper, we summarize recent progress in the applications of ML to composite materials modeling and design. An overview of how different types of ML algorithms can be applied to accelerate composite research is presented. This framework is envisioned to revolutionize approaches to design and optimize composites for the next generation of materials with unprecedented properties.
Full paper: CT Chen and GX Gu, Machine learning for composite materials, MRS Communications, 2019, DOI: 10.1557/mrc.2019.32
- Chun-Teh
Updated: Nov 9, 2020

Abstract: Nature assembles a range of biological composites with remarkable mechanical properties despite being composed of relatively weak polymeric and ceramic components. However, the architectures of biomaterials cannot be considered as optimal designs for engineering applications since biomaterials are constantly evolving for multiple functions beyond carrying external loading. Here, it is aimed to develop an intelligent approach to design superior composites from scratch—starting from constituent materials. A systematic computational investigation of the effect of constituent materials (assumed to be perfectly brittle) on the behavior of composites using an integrated approach combining finite element method, molecular dynamics, and machine learning (ML) is reported. It is demonstrated that instead of using brute‐force methods, machine learning is a much more efficient approach and can generate optimal designs with similar performance to those obtained from an exhaustive search. Furthermore, it is shown that the toughening and strengthening mechanism observed in composites at the continuum‐scale by combining stiff and soft constituents is valid for nanomaterials as well. Results show that high‐performing designs of graphene nanocomposites can be generated using our ML approach. This novel ML‐based design framework can be applied to other material systems to study a variety of structure–property relationships over several length‐scales.
Full paper: CT Chen and GX Gu, Effect of constituent materials on composite performance: exploring design strategies via machine learning, Advanced Theory and Simulations, 2019, DOI: 10.1002/adts.201900056
Updated: Nov 9, 2020

Abstract: We report a comprehensive ab initio structural investigation of more than 43000 probable molecular structures of polydopamine (PDA) and eumelanin in various oxidation states. With the aid of a computational approach including a brute-force algorithmic generation of chemical isomers and density functional theory, all probable oxidized 5,6-dihydroxyindole (DHI) oligomers, ranging from dimers to tetramers, have been systematically generated and evaluated. We identify a set of the most stable molecular structures of PDA and eumelanin which represent the chemically diverse nature of these materials. Results show that more planar molecular structures have a tendency to be more stable. We also observe that, in some cases, forming cyclic molecular structures could reduce the energy of a DHI tetramer and make it more stable. This finding supports the hypothesis that cyclic molecules could exist in eumelanin-like materials. Additionally, the cyclic molecular models proposed in this work are energetically more favorable than the popular porphyrin-like models in this field.
Full paper: CT Chen and MJ Buehler, Polydopamine and eumelanin models in various oxidation states, Physical Chemistry Chemical Physics, 2018, DOI: 10.1039/C8CP05037F