Updated: Nov 9, 2020

Abstract: Inspired by the hierarchical structure of nacre and the robust adhesive ability of mussel threads, graphene oxide–polydopamine (GO–PDA) nanocomposites are designed and synthesized to achieve enhanced mechanical properties and to provide additional functionalities. Here we report a joint experimental/computational investigation of GO–PDA nanocomposites, proposing a probable chemical reduction mechanism of PDA to convert GO to reduced GO (rGO), which helps increase the electrical conductivity. The most stable chemical connection between PDA and GO is also proposed. Our artificial nacre-like GO–PDA nanocomposites are shown to have higher tensile strength and toughness compared to natural nacre. The pulling tests conducted by molecular dynamics simulations, which are supported by our experiments, reveal that the enhanced mechanical strength of GO–PDA nanocomposites mainly originates from the additional non-covalent interactions provided by PDA. The humidity-driven shrinking mechanism of GO–PDA nanocomposites due to non-uniform stresses on the GO–PDA sheets is also discovered in our simulations and supported by our experiments. The findings in this work can help improve and tune the properties of GO–PDA nanocomposites and might also apply to other 2D materials.
Full paper: C-T Chen, FJ Martin-Martinez, Shengjie Ling, Zhao Qin, MJ Buehler, Nacre-inspired design of graphene oxide–polydopamine nanocomposites for enhanced mechanical properties and multi-functionalities, Nano Futures, 2017, DOI: 10.1088/2399-1984/aa6aed
Simulation movie:
Movie: GO–PDA model with 15 wt% water content during pulling test
Updated: Nov 9, 2020

Abstract: A set of computational methods that contains a brute-force algorithmic generation of chemical isomers, molecular dynamics (MD) simulations, and density functional theory (DFT) calculations is reported and applied to investigate nearly 3000 probable molecular structures of polydopamine (PDA) and eumelanin. All probable early-polymerized 5,6-dihydroxyindole (DHI) oligomers, ranging from dimers to tetramers, have been systematically analyzed to find the most stable geometry connections as well as to propose a set of molecular models that represents the chemically diverse nature of PDA and eumelanin. Our results indicate that more planar oligomers have a tendency to be more stable. This finding is in good agreement with recent experimental observations, which suggested that PDA and eumelanin are composed of nearly planar oligomers that appear to be stacked together via π–π interactions to form graphite-like layered aggregates. We also show that there is a group of tetramers notably more stable than the others, implying that even though there is an inherent chemical diversity in PDA and eumelanin, the molecular structures of the majority of the species are quite repetitive. Our results also suggest that larger oligomers are less likely to form. This observation is also consistent with experimental measurements, supporting the existence of small oligomers instead of large polymers as main components of PDA and eumelanin. In summary, this work brings an insight into the controversial structure of PDA and eumelanin, explaining some of the most important structural features, and providing a set of molecular models for more accurate modeling of eumelanin-like materials.
Full paper: C-T Chen, FJ Martin-Martinez, GS Jung, MJ Buehler, Polydopamine and eumelanin molecular structures investigated with ab initio calculations, Chemical Science, 2016, DOI: 10.1039/C6SC04692D
Simulation movies:
Movie: Brute-force algorithmic generator creating checkerboard representations of 216 DHI trimers
Movie: Energy minimization to generate an initial molecular structure
Movie: MD simulation to find the most stable geometry
- Chun-Teh
Updated: Nov 9, 2020

Abstract: Eumelanin is a ubiquitous biological pigment, and the origin of its broadband absorption spectrum has long been a topic of scientific debate. Here, we report a first-principles computational investigation to explain its broadband absorption feature. These computations are complemented by experimental results showing a broadening of the absorption spectra of dopamine solutions upon their oxidation. We consider a variety of eumelanin molecular structures supported by experiments or theoretical studies, and calculate the absorption spectra with proper account of the excitonic couplings based on the Frenkel exciton model. The interplay of geometric order and disorder of eumelanin aggregate structures broadens the absorption spectrum and gives rise to a relative enhancement of absorption intensity at the higher-energy end, proportional to the cube of absorption energy. These findings show that the geometric disorder model is as able as the chemical disorder model, and complements this model, to describe the optical properties of eumelanin.
Full paper: C-T Chen, C Chuang, J Cao, V Ball, D Ruch, MJ Buehler, Excitonic effects from geometric order and disorder explain broadband optical absorption in eumelanin, Nature Communications, 2014, DOI:10.1038/ncomms4859
Simulation movie:
Movie: Self-assembly of eumelanin protomolecules in MD simulation